Post tagged Statistical Methods

Separating physically distinct influences on Pacific sea-surface temperature variability

A key challenge in climate science is to distinguish temperature changes in response to external forcing (e.g., global warming in response to anthropogenic greenhouse gasses) from temperature changes due to atmosphere-ocean internal variability. Extended integrations of forced and unforced climate models are often used for this purpose. In Wills et al. (2018), we demonstrated a novel method called low-frequency component analysis (LFCA), which separates modes of internal variability from global warming based on differences in time scales and spatial patterns, without relying on climate models.

Read more “Separating physically distinct influences on Pacific sea-surface temperature variability” »