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1 Equations of Motion
The equations of motion in a rotating Cartesian frame with z as vertical coordinate are:

Du

Dt
= −1

ρ
∇p− 2Ω× u + g + Fr (1)

Or in component form:

Du

Dt
= −1

ρ

∂p

∂x
+ fv + Frx (2)

Dv

Dt
= −1

ρ

∂p

∂y
− fu+ Fry (3)

Dw

Dt
= −1

ρ

∂p

∂z
− g + Frz (4)

Here, u = (u, v, w) are the zonal, meridional, and vertical components of velocity; p
is pressure; ρ is density; f = 2Ω sinϕ is the Coriolis parameter, where Ω is Earth’s
rotation rate, and ϕ is latitude; and Fr = (Frx, Fry, Frz) is the frictional force per unit
mass. D/Dt is the material derivative, defined as

D

Dt
=

∂

∂t
+ u · ∇ =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (5)

The continuity equation takes the form

Dρ

Dt
+ ρ∇·u =

∂ρ

∂t
+∇ · (ρu) = 0. (6)

This set of equations for (u, v, w, ρ) is closed if we have a thermodynamic equation
for p and closures for Fr. For example, if we combine the ideal gas law and the first
law of thermodynamics, we obtain the following two equations that close the set of
equations:

Dθ

Dt
=
θ

T

Q̇

Cp
, ρ =

p

RT
. (7)

Here θ is the potential temperature, defined as

θ = T

(
pr
p

)κ
, (8)
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where κ = R/Cp, with gas constant R and specific heat at constant pressure Cp; pr
is some reference pressure (usually the mean sea level pressure, or 1 bar = 105Pa is
used); Q̇ is the heating rate per unit mass. In adiabatic motions, Q̇ = 0, thus θ is mate-
rially conserved.

Additionally, if we have a physical tracer φ, then its evolution is given by

Dφ

Dt
= Sφ (9)

Here, Sφ is the source of φ. If φ is a conserved variable without external sources, then
Sφ = 0.

2 Boussinesq Approximation
In the Boussinesq approximation, we decompose the density and pressure as

ρ(x, y, z, t) = ρ0 + δρ(x, y, z, t) (10)
p(x, y, z, t) = p0(z) + δp(x, y, z, t) (11)

and assume that δρ � ρ0, δp � p0. Additionally, the reference values of ρ0 and p0
satisfy hydrostatic balance, such that

− 1

ρ0

∂p0
∂z
− g = 0. (12)

The Boussinesq equations of motion are obtained by substituting the decomposition
and neglecting any δρ and δp terms that appear with ρ0 and p0, leading to

Du

Dt
= − 1

ρ0

∂δp

∂x
+ fv + Frx, (13)

Dv

Dt
= − 1

ρ0

∂δp

∂y
− fu+ Fry, (14)

Dw

Dt
= − 1

ρ0

∂δp

∂z
+ b+ Frz. (15)

The Boussinesq continuity equation is just

∇ · u = 0. (16)

The buoyancy b in the vertical momentum equation is defined as

b = −g δρ
ρ0
. (17)

Using the idealized gas law, we can write

p = ρRT ⇒ δρ

ρ0
=
δp

p0
− δT

T0
≈ −δT

T0
, (18)

θ = T

(
pr
p

)κ
⇒ δθ

θ0
=
δT

T0
− κδp

p0
≈ δT

T0
, (19)
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with the decompositions

T (x, y, z, t) = T0(z) + δT (x, y, z, t), (20)
θ(x, y, z, t) = θ0(z) + δθ(x, y, z, t). (21)

Here we have assumed that δp/p0 � δT/T0. This means that density fluctuations
are mainly due to the temperature fluctuations; contributions from pressure fluctuations
are small. With this assumption, the buoyancy b takes the following form

b = −g δρ
ρ0

= g
δT

T0
= g

δθ

θ0
. (22)

3 Reynolds Averaging, and Reynolds Stress
With the Boussinesq approximation, if we further decompose the values of u, v, w into
the (time or spatial) mean values u, v, w and the fluctuating values u′, v′, w′, and using
the fact that (·)′ = 0, we can write prognostic equations for the mean motion. First we
deduce the continuity equation

∇ · u = ∇ · u +∇ · u′ = 0. (23)

By taking the average, we can find that both the mean and fluctuating components are
zero, i.e.,

∇ · u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (24)

∇ · u′ =
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0. (25)

Then, for the equations of motion, let’s start with the equation for the x component

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂δp

∂x
+ fv + Frx. (26)

We may take the average directly and obtain

∂u

∂t
+u

∂u

∂x
+v

∂u

∂y
+w

∂u

∂z
+u′

∂u′

∂x
+v′

∂u′

∂y
+w′ ∂u

′

∂z
= − 1

ρ0

∂δp

∂x
+fv+F rx. (27)

Then, taking the mean of the fluctuating component of the continuity equation multi-
plied by u′, we get

0 =

(
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z

)
u′ (28)

=

(
∂u′u′

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

)
−
(
u′
∂u′

∂x
+ v′

∂u′

∂y
+ w′ ∂u

′

∂z

)
(29)
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Adding this equation to the left hand side of equation (27), we get

Du

Dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
(30)

= − 1

ρ0

∂δp

∂x
+ fv + F rx −

(
∂u′u′

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

)
(31)

Similarly for the other component equations:

Dv

Dt
=
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
(32)

= − 1

ρ0

∂δp

∂y
− fu+ F ry −

(
∂v′u′

∂x
+
∂v′v′

∂y
+
∂v′w′

∂z

)
(33)

Dw

Dt
=
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
(34)

= − 1

ρ0

∂δp

∂z
+ b+ F rz −

(
∂w′u′

∂x
+
∂w′v′

∂y
+
∂w′w′

∂z

)
(35)

And for any tracer φ:

Dφ

Dt
=
∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ w

∂φ

∂z
= Sφ −

(
∂u′φ′

∂x
+
∂v′φ′

∂y
+
∂w′φ′

∂z

)
. (36)

The covariance terms on the right hand sides of the equations represent the aver-
age effects of turbulent fluxes on the mean momentum and tracer budgets. They are
usually referred to as Reynolds stresses. It is clear from the equations that, to solve
for the first-order moment (ψ) equations, we need to know the second-order moments
(covariance ψ′ζ ′). Althought we can further deduce prognostic equations of second-
order moments, it would then involve third-order terms that we need to parameterize.
Eventually, we have to develop closure equations for the higher-order moments, for
example, by eddy diffusion with parameterized eddy diffusivity.

4 Turbulent Kinetic Energy and its Prognostic Equa-
tion

One especially important combination of second moment terms is the mean turbulent
kinetic energy E, defined as

E =
1

2
(u′u′ + v′v′ + w′w′), E =

1

2
(u′u′ + v′v′ + w′w′). (37)

The prognostic equation for E is deduced from the prognostic equations of u′, v′,
and w′. The deduction for the u-component is given below, and it is similar for the
other components.
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First, we subtract the mean equation (31) from the full equation (26) to get the
prognostic equation for u′:

∂u′

∂t
+

(
u
∂u′

∂x
+ v

∂u′

∂y
+ w

∂u′

∂z

)
+

(
u′
∂u

∂x
+ v′

∂u

∂y
+ w′ ∂u

∂z

)
+

(
u′
∂u′

∂x
+ v′

∂u′

∂y
+ w′ ∂u

′

∂z

)
= − 1

ρ0

∂δp′

∂x
+ fv′ + F

′
rx +

(
∂u′u′

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

)
(38)

Multiplying this equation by u′ and taking the average (·), we get

1

2

∂u′2

∂t
+

(
u
∂ 1

2u
′2

∂x
+ v

∂ 1
2u

′2

∂y
+ w

∂ 1
2u

′2

∂z

)
+

(
u′u′

∂u

∂x
+ u′v′

∂u

∂y
+ u′w′ ∂u

∂z

)

+

(
u′
∂ 1

2u
′2

∂x
+ v′

∂ 1
2u

′2

∂y
+ w′ ∂

1
2u

′2

∂z

)

= − 1

ρ0
u′
∂δp′

∂x
+ fu′v′ + u′F ′

rx (39)

Note that the Reynold stresses in last term on the right hand side have dropped out. The
equation can be rewritten in vector form as:

D 1
2u

′2

Dt
+

(
u′u′

∂u

∂x
+ u′v′

∂u

∂y
+ u′w′ ∂u

∂z
) +∇ · (u′u′2/2

)
= − 1

ρ0
u′
∂δp′

∂x
+ fu′v′ + u′F ′

rx (40)

Similarly, the equations for 1
2v

′2 and 1
2w

′2 are as below:

1

2

Dv′2

Dt
+

(
v′u′

∂v

∂x
+ v′v′

∂v

∂y
+ v′w′ ∂v

∂z

)
+∇ · 1

2
(u′(v′2))

= − 1

ρ0
v′
∂δp′

∂y
− fv′u′ + v′F ′

ry (41)

D 1
2w

′2

Dt
+

(
w′u′

∂w

∂x
+ w′v′

∂w

∂y
+ w′w′ ∂w

∂z

)
+∇ ·

(
u′(

1

2
w′2
)

)

= − 1

ρ0
w′ ∂δp

′

∂z
+ b′w′ + w′F ′

rz (42)

Summing up the three component equations, we can get the TKE prognostic equa-
tion, which takes the following form:

DE

Dt
= S +B + T + ε (43)
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where S,B, T, ε are source terms representing shear production, buoyancy production,
transport by turbulent motion, and viscous dissipation. They are defined as follows:

S = −u′u′ · ∇u− v′u′ · ∇v − w′u′ · ∇w, (44)

B = w′b′ = g
w′θ′

θ0
, (45)

T = − 1

ρ0
u′
∂p′

∂x
+ v′

∂p′

∂y
+ w′ ∂p

′

∂z
−∇ · u′E

= −∇ · u′
(
p′

ρ0
+ E

)
, (46)

ε = u′F ′
rx + v′F ′

ry + w′F ′
rz = u′(ν∇2u′) + v′(ν∇2v′) + w′(ν∇2w′). (47)

We have used δp′ = p′, δθ′ = θ′, since the reference profiles p0(z), θ0(z) do not de-
pend on time; ν is the kinematic viscosity coefficient. Shear production is positive
when the turbulent momentum fluxes are directed down the gradient of mean momen-
tum. Buoyancy production is positive when buoyant parcels move (and accelerate)
upward or negatively buoyant parcels move (and accelerate) downward. The first term
in the transport term T is related to the acceleration with the fluctuating pressure, i.e.,
pressure work that redistributes kinetic energy among different parts of the fluid; the
second term in T is the flux of local TKE that also transports energy. Both terms are
divergences of fluxes that would sum to zero by integration over a domain with van-
ishing fluxes at the boundaries (e.g., a vertical column with horizontal homogeneity).
Viscous dissipation is the dissipation of smallest-scale TKE into viscous heat.

For a horizontally homogeneous boundary layer, we may neglect all horizontal
transport terms, and we also neglect the gradient terms of w since |w| � |u|, |v|, so
that the S and T terms are approximated as

S ≈ −u′w′ ∂u

∂z
− v′w′ ∂v

∂z
, (48)

T ≈ − ∂

∂z

(
w′p′

ρ0
+ w′E

)
. (49)

The buoyancy production term B is the same as above. And if we further assume a
constant viscosity ν and neglect the flux divergence term∇·(u′∇u′+v′∇v′+w′∇w′),
then the dissipation term ε can be approximated as

ε ≈ −ν[(∇u′)2 + (∇v′)2 + (∇w′)2] (50)

This form of ε implies that the viscous dissipation is always negative when shear (or
velocity differences) occur in the flow, and that the smallest-scale eddies will be most
efficiently damped by viscous dissipation, since smaller length scale with the same
velocity implies larger shear.
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