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Here we briefly review regularization methods for the solution of linear ill-posed prob-
lems, point out relationships among different regularization methods that are used in
inversions for regional carbon fluxes, and show how generalized cross-validation can
be used with different regularization methods. The mathematical developments largely
follow Hansen [1998].

1. Inverse problem for regional carbon fluxes

To estimate CO2 fluxes, one has to estimate a vector x in the linear model

Ax = b + ε, (1)

where b is a given n × 1 vector of CO2 concentrations at n locations; ε is a random
error with zero mean and with covariance matrix cov(ε) = Cb; x is an unknown
p × 1 vector of CO2 fluxes into and out of p regions; and A is a given n × p matrix
representing a transport operator that relates CO2 fluxes to CO2 concentrations [e.g.,
Enting, 2002].

If the transport operator A is ill-conditioned, as is generally the case when the
transport is turbulent so that the effect of regional sources and sinks on CO2 concen-
trations downstream is smoothed out, the least squares estimate of the CO2 fluxes is
poorly constrained by the CO2 concentrations. In inversions for regional CO2 fluxes,
more stable flux estimates are usually obtained by minimizing, in place of the least
squares object function, a regularized object function

J = (Ax − b)T
C

−1
b (Ax − b) + λ2(x − x0)

T
C

−1
x (x − x0), (2)

consisting of the sum of the least squares object function (first term) and a penalty term
(second term) that penalizes deviations of the solution x from a given prior estimate
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x0. The covariance matrix Cx represents uncertainty about the prior estimate x0. The
regularization parameter λ indicates the relative weight of the penalty term compared
with the least squares term.

In CO2 inversions, the covariance matrices Cb and Cx are usually taken to be di-
agonal, with diagonal entries cb and cx equal to assumed variances of the local CO2

concentration errors and of the regional prior flux distributions. (However, the meth-
ods presented here may be used regardless of whether the covariance matrices are di-
agonal.) The regularization parameter λ is usually taken to be equal to one. In the
TransCom protocol, which we followed, the prior standard deviations c

1/2
x for land re-

gions are taken to be proportional to the growing season net CO2 fluxes estimated with
a model of the biosphere; the prior standard deviations c

1/2
x for ocean regions are taken

to be proportional to the area of each region and to the number of CO2 measurements
in each region [Gurney et al., 2003].

The minimizer x
∗ of the object function (2) for λ = 1 can be interpreted as a

Bayesian maximum a posteriori estimate of CO2 fluxes, assuming a Gaussian distribu-
tion of prior fluxes with mean x0 and covariance matrix Cx [Tarantola, 1987; Enting,
2002]. Alternatively, the minimizer x

∗ of the object function (2) for any λ can be in-
terpreted as a Tikhonov-regularized estimate of CO2 fluxes [Tikhonov, 1963; Hansen,
1998, chapter 5]. (Tikhonov regularization is also known as ridge regression [Hoerl
and Kennard, 1970].) In the Bayesian interpretation, the weighting matrix, or inverse
of the prior covariance matrix, C−1

x is taken to be known a priori. In the regularization
interpretation, the weighting matrix C

−1
x is taken to be known up to the scaling factor

λ, a regularization parameter that must be estimated.

2. Transformation to standard form

The object function (2) can be transformed to a standard form by mapping the prior
estimate x0 to zero and by rescaling variables so that the covariance matrices Cb and
Cx, assumed to be nonsingular, are identity matrices [Hansen, 1998, chapter 2.3]. The
transformation takes the form

Ā = C
−1/2
b AC

1/2
x , (3a)

x̄ = C
−1/2
x (x − x0), (3b)

b̄ = C
−1/2
b (b − Ax0), (3c)

where C
1/2
b and C

1/2
x are the Cholesky factors of the covariance matrices Cb and Cx.

The linear model (1) in the original variables is equivalent to the linear model

Āx̄ = b̄ + ε̄ (4)

in the transformed variables, with an error covariance matrix cov(ε̄) equal to the iden-
tity matrix. In the transformed variables (3), the object function (2) assumes the stan-
dard form

J = ‖Āx̄ − b̄‖2
2 + λ2‖x̄‖2

2, (5)

where ‖·‖2 denotes the Euclidean norm. For λ = 0, minimizing the object function (5)
yields the least squares estimates. For λ = 1, minimizing the object function (5) yields
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the Bayesian estimates used in the TransCom CO2 inversions [Gurney et al., 2003]
as well as in most other CO2 inversions starting with Enting [1993]. For arbitrary
λ > 0, minimizing the object function (5) yields the Tikhonov-regularized estimate
with regularization parameter λ.

3. Singular value decomposition, filter factors, and regularization methods

The least squares estimate and several regularized estimates for the linear model (4)
can be expressed compactly in terms of the singular value decomposition of the trans-
formed transport operator Ā,

Ā = UΣV
T , (6)

where U and V have orthonormal columns ui (left singular vectors) and vi (right
singular vectors), and Σ is a diagonal matrix with diagonal entries σi ≥ 0, which are
assumed to be arranged in descending order. A large family of estimates x̄

∗ for the
linear model (4) can be expressed as a linear combination of right singular vectors vi,

x̄
∗ =

rank(Ā)
∑

i=1

fi
u

T
i b̄

σi
vi, (7)

where the filter factors fi characterize the estimation method [cf. Hansen, 1998, chap-
ter 4]. The coefficients u

T
i b̄ are often referred to as Fourier coefficients, in analogy to

inverse problems in which the counterpart of the matrix Ā is a convolution operator
whose singular value decomposition is equivalent to a Fourier expansion [cf. Wahba,
1977; Anderssen and Prenter, 1981].

a. Least squares estimation

For the least squares estimate (λ = 0), the filter factors are identically equal to one
(that is, no filtering),

fi = 1 for all i. (8)

Expressing the least squares estimate in terms of the singular value decomposition (7)
makes manifest that errors of order ε in the transformed data b̄ typically result in errors
of order ε/σmin in the estimate x̄

∗, where σmin is the smallest nonzero singular value.
If typical data errors exceed the smallest singular value, the least squares estimate is
poorly constrained by the data. If the transformed transport operator Ā is rank-deficient
(i.e., rank(Ā) < p), the least squares estimate is not unique. In this case, the estimate
(7) with filter factors (8) is the least squares estimate with minimum norm ‖x̄∗‖2.

If the transformed transport operator Ā has small singular values, regularization
methods stabilize the least squares estimates by filtering out the contributions of right
singular vectors vi that are associated with the small singular values σi. These contri-
butions to the estimate (7) typically represent high-frequency noise that is not estimable
given the uncertainty of the data.
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b. Bayesian estimation

For the Bayesian maximum a posteriori estimate (λ = 1), for which a prior normal dis-
tribution with mean zero and identity covariance matrix is assumed for the transformed
fluxes x̄, the filter factors are

fi =
σ2

i

σ2
i + 1

. (9)

This filter function decays smoothly from fi ≈ 1 for σi � 1 to fi ≈ 0 for σi � 1; that
is, right singular vectors with singular values smaller than 1 are effectively filtered out.
This filtering is what is commonly used in inversions for CO2 fluxes.

c. Tikhonov regularization/ridge regression

For the Tikhonov-regularized estimate (λ adjustable), the filter factors are [Hansen,
1998, chapter 4.2]

fi =
σ2

i

σ2
i + λ2

. (10)

This filter function decays smoothly from fi ≈ 1 for σi � λ to fi ≈ 0 for σi � λ;
that is, right singular vectors with singular values smaller than λ are effectively filtered
out.

The Tikhonov filter function is structurally identical to the Wiener filter, which
is the optimal filter to separate noise of spectral density λ2 from a signal of spectral
density σ2

i [Papoulis, 1991; Anderssen and Prenter, 1981].

d. Least squares estimation with inequality constraints

The estimate (7) with Tikhonov filter factors (10) is also the solution of a least squares
problem with inequality constraint,

min
x̄

‖Āx̄ − b̄‖2
2 subject to ‖x̄‖2

2 ≤ α, (11)

where α is a parameter constraining the norm of the solution. If the norm ‖x̄∗‖2 of the
least squares estimate is less than α, the least squares estimate solves the constrained
least squares problem (11). If the norm of the least squares estimate is greater than
α, the Tikhonov estimate solves the constrained least squares problem (11), with a
regularization parameter λ (a Lagrange multiplier) that is a function of α [Golub and
Van Loan, 1989, chapter 12.1.2].

Regularization with an inequality constraint (11), then, is equivalent to Tikhonov
regularization if the inequality constraint is not redundant. Bayesian estimation and
regularization with an inequality constraint, contrasted by Fan et al. [1999] as differ-
ent methods, are therefore very similar. The methods merely correspond to choosing
different values of the regularization parameter λ (and potentially different scalings of
the variables).
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e. Regularization by truncated singular value decomposition

Another common way to filter out right singular vectors that are associated with small
singular values is to keep only the first k right singular vectors, corresponding to filter-
ing with a step function filter

fi =

{

1 i ≤ k
0 i > k

(12)

for some effective rank k ≤ rank(Ā) [e.g., Hansen, 1998, chapter 3.2; Fan et al.,
1999]. This usually yields estimates similar to Tikhonov regularization with regular-
ization parameter λ ≈ σk.

4. Generalized cross-validation

Generalized cross-validation offers a way to estimate appropriate values of parameters
such as the regularization parameters k in truncated singular value decomposition, λ in
Tikhonov regularization, or α in least squares estimation with inequality constraint. In
the Bayesian formulation used in TransCom, components of the covariance matrices
Cb and Cx, which are generally poorly known, can likewise be estimated by general-
ized cross-validation.

For the family of estimates (7), the generalized cross-validation function, to be
minimized as a function of the parameters, is given by

GCV =
‖Āx̄

∗ − b̄‖2
2

T 2
, (13)

where the numerator is the squared residual norm and the denominator is a squared
effective number of degrees of freedom [Hansen, 1998, chapter 7.4]. For all estimation
methods discussed above, the effective number of degrees of freedom (which is not
necessarily an integer) can be written in terms of the filter factors as

T = n −

rank(Ā)
∑

i=1

fi. (14)

The residual norm in the numerator of the GCV function can be computed efficiently
from a singular value decomposition of the transformed transport operator Ā, making
the evaluation of the GCV function for several regularization parameters straightfor-
ward.

The minimizer of the GCV function approximately minimizes the expected mean
squared error of predictions of the transformed data b̄ with an estimated linear model
(4) [Golub et al., 1979]. With small but nonzero probability, the GCV function has a
minimum near zero regularization (i.e., at λ = 0 or for α → ∞), so that generalized
cross-validation occasionally leads to undersmoothed estimates when, in fact, more
strongly regularized and smoother estimates would be more appropriate [Wahba and
Wang, 1995]. Undersmoothed estimates in such cases can be avoided by constructing
bounds for the regularization parameters, for example, from a priori guesses of the
magnitude of the residuals [Hansen, 1998, chapters 7.7 and 7.2].
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In our analyses, we evaluated the GCV function (13) as a function of the regular-
ization parameter λ and of the weighting parameter τ on a mesh with spacing of 0.05
in τ and of 0.27 in λ2.

Where inversion results are sensitively dependent on inversion parameters, it may
be useful not only to choose ”optimal” values of the parameters but also to estimate
confidence regions for the parameters. Methods that treat inversion parameters as ran-
dom variables and estimate their probability distributions given the data and a probabil-
ity model for the parameters [Wang and Wahba, 1995; Koch, 1999; Koch and Kusche,
2002] could be applied for this purpose. Heuristic estimates of confidence regions may
also be obtained from the curvature of the GCV function or other object functions at the
optimum, by analogy with ordinary least squares regression [Press et al., 1992, chapter
15.6]. Given confidence regions, the impact the uncertainty about inversion parameters
has on flux estimates could then be quantified using either linear error propagation or
Monte-Carlo methods.
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