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systems, for example, are sometimes characterized by principal oscillation patterns, eigen-
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dimensional data, a stepwise least squares algorithm is proposed. This algorithm computes
model coefficients and evaluates criteria for the selection of the model order stepwise for AR
models of successively decreasing order. Numerical simulations indicate that, with the least
squares algorithm, the AR model coefficients and the eigenmodes derived from the coefficients
are estimated reliably and that the approximate 95% confidence intervals for the coefficients
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1. INTRODUCTION
Dynamical characteristics of a complex system can often be inferred from
analyses of a stochastic time series model fitted to observations of the
system [Tiao and Box 1981]. In the geosciences, for example, oscillations of
a complex system are sometimes characterized by what are known as
principal oscillation patterns, eigenmodes of a multivariate autoregressive
model of first order (AR(1) model) fitted to observations [Hasselmann 1988;
von Storch and Zwiers 1999, Chapter 15]. Principal oscillation patterns
possess characteristic frequencies (or oscillation periods) and damping
times, the frequencies being the natural frequencies of the AR(1) model. By
analyzing principal oscillation patterns of an oscillatory system, one can
identify components of the system that are associated with characteristic
frequencies and damping times. Xu and von Storch [1990], for example, use
a principal oscillation pattern analysis to identify the spatial structures of
the mean sea level pressure that are associated with the conglomerate of
climatic phenomena collectively called El Niño and the Southern Oscilla-
tion. In a similar manner, Huang and Shukla [1997] distinguish those
spatial structures of the sea surface temperature that oscillate with periods
on the order of years from those that oscillate with periods on the order of
decades. More examples of such analyses can be found in the bibliographies
of these papers.

Since the principal oscillation pattern analysis is an analysis of eigen-
modes of an AR(1) model, dynamical characteristics of a system can be
inferred from principal oscillation patterns only if an AR(1) model provides
an adequate fit to the observations of the system. The applicability of the
principal oscillation pattern analysis is therefore restricted. Generalizing
the analysis of eigenmodes of AR(1) models to autoregressive models of
arbitrary order p (AR~ p! models), we will render the analysis of eigen-
modes of AR models applicable to a larger class of systems.

An m-variate AR~ p! model for a stationary time series of state vectors
vn [ Rm, observed at equally spaced instants n, is defined by

vn 5 w 1 O
l51

p

Alvn2l 1 «n, «n 5 noise~C!, (1)

where the m-dimensional vectors «n 5 noise~C! are uncorrelated random
vectors with mean zero and covariance matrix C [ Rm3m, and the matrices
A1, . . . , Ap [ Rm3m are the coefficient matrices of the AR model. The
parameter vector w [ Rm is a vector of intercept terms that is included to
allow for a nonzero mean of the time series,
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^vn& 5 ~I 2 A1 2 · · · 2 Ap!
21 w, (2)

where ^ z& denotes an expected value. (For an introduction to modeling
multivariate time series with such AR models, see Lütkepohl [1993].) In
this paper, we will describe the eigendecomposition of AR~ p! models of
arbitrary order p. Since the analysis of eigenmodes of AR models is of
interest in particular for high-dimensional systems such as the ones
examined in the geosciences, we will also discuss how the order p of an AR
model and the coefficient matrices A1, . . . , Ap, the intercept vector w, and
the noise covariance matrix C can be estimated from high-dimensional time
series data in a computationally efficient and stable way.

In Section 2, it is shown that an m-variate AR~ p! model has mp
eigenmodes that possess, just like the m eigenmodes of an AR(1) model,
characteristic frequencies and damping times. The excitation is introduced
as a measure of the dynamical importance of the modes. Section 3 describes
a stepwise least squares algorithm for the estimation of parameters of AR
models. This algorithm uses a QR factorization of a data matrix to
evaluate, for a sequence of successive orders, a criterion for the selection of
the model order and to compute the parameters of the AR model of the
optimum order. Section 4 discusses the construction of approximate confi-
dence intervals for the intercept vector, for the AR coefficients, for the
eigenmodes derived from the AR coefficients, and for the oscillation periods
and damping times of the eigenmodes. Section 5 contains results of numer-
ical experiments with the presented algorithms. Section 6 summarizes the
conclusions.

The methods presented in this paper are implemented in the Matlab
package ARFIT, which is described in a companion paper [Schneider and
Neumaier 2001]. We will refer to modules in ARFIT that contain implemen-
tations of the algorithms under consideration.

Notation. A :k denotes the kth column of the matrix A. AT is the
transpose, and A† the conjugate transpose of A. The inverse of A† is written
as A2†, and the superscript * denotes complex conjugation. In notation, we
do not distinguish between random variables and their realizations;
whether a symbol refers to a random variable or to a realization can be
inferred from the context.

2. EIGENDECOMPOSITION OF AR MODELS

The eigendecomposition of an AR~ p! model is a structural analysis of the
AR coefficient matrices A1, . . . , Ap. The eigendecomposition of AR(1)
models is described, for example, by Honerkamp [1994, pp. 426 ff.]. In what
sense and to what extent an eigendecomposition of an AR(1) model can
yield insight into dynamical characteristics of complex systems is discussed
by von Storch and Zwiers [1999, Chapter 15]. In Section 2.1, a review of the
eigendecomposition of AR(1) models introduces the concepts and notation

Multivariate Autoregressive Models • 29

ACM Transactions on Mathematical Software, Vol. 27, No. 1, March 2001.



used throughout this paper. In Section 2.2, the results for AR(1) models are
generalized to AR~ p! models of arbitrary order p. Throughout this section,
we assume that the mean (2) has been subtracted from the time series of
state vectors vn, so that the intercept vector w can be taken to be zero.

2.1 AR Models of First Order

Suppose the coefficient matrix A of the m-variate AR(1) model

vn 5 Avn21 1 «n, «n 5 noise~C!, (3)

is nondefective, so that it has m (generally complex) eigenvectors that form
a basis of the vector space Rm of the state vectors vn. Let S be the
nonsingular matrix that contains these eigenvectors as columns S :k, and let
L 5 Diag~lk! be the associated diagonal matrix of eigenvalues lk (k 5 1,
. . . , m). The eigendecomposition of the coefficient matrix can then be
written as A 5 SLS21. In the basis of the eigenvectors S :k of the coefficient
matrix A, the state vectors vn and the noise vectors «n can be represented
as linear combinations

vn 5 O
k51

m

vn
~k!S:k 5 Sv9n and «n 5 O

k51

m

«n
~k!S:k 5 S«9n, (4)

with coefficient vectors v9n 5 ~vn
~1!, . . . , vn

~m!!T and «9n 5 ~«n
~1!, . . . , «n

~m!!T.
Substituting these expansions of the state vectors vn and of the noise
vectors «n into the AR(1) model (3) yields, for the coefficient vectors v9n, an
AR(1) model

v9n 5 Lv9n21 1 «9n, «9n 5 noise~C9!, (5)

with a diagonal coefficient matrix L and with a transformed noise covari-
ance matrix

C9 5 S21CS2†. (6)

The m-variate AR(1) model for the coefficient vectors represents a system
of m univariate models

vn
~k! 5 lkvn21

~k! 1 «n
~k!, k 5 1, . . . , m, (7)

which are coupled only via the covariances ^«m
~k!«n

~l!*& 5 dmnC9kl of the noise
coefficients (where dmn 5 1 for m 5 n and dmn 5 0 otherwise).

Since the noise vectors are assumed to have mean zero, the dynamics of
the expected values of the coefficients
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^vn
~k!& 5 lk^vn21

~k! &

decouple completely. In the complex plane, the expected values of the
coefficients describe a spiral

^vn1t
~k! & 5 lk

t ^vn
~k!& 5 e2t/tk e~arglk!it ^vn

~k!&

with damping time

tk [ 21 / log?lk? (8)

and period

Tk [
2p

?arg lk?
, (9)

the damping time and the period being measured in units of the sampling
interval of the time series vn. To render the argument arg z 5 Im~log z!of
a complex number z unique, we stipulate 2p # arg z # p, a convention
that ensures that a pair of complex conjugate eigenvalues is associated
with a single period. For a stable AR model with nonsingular coefficient
matrix A, the absolute values of all eigenvalues lk lie between zero and
one, 0 , ?lk? , 1, which implies that all damping times tk of such a model
are positive and bounded.

Whether an eigenvalue is real and, if it is real, whether it is positive or
negative determines the dynamical character of the eigenmode to which the
eigenvalue belongs. If an eigenvalue lk has a nonzero imaginary part or if
it is real and negative, the period Tk is bounded, and the AR(1) model (7)
for the associated time series of coefficients vn

~k! is called a stochastically
forced oscillator. The period of an oscillator attains its minimum value Tk

5 2 if the eigenvalue lk is real and negative, that is, if the absolute value
?arg lk? of the argument of the eigenvalue is equal to p. The smallest
oscillation period Tk 5 2 that is representable in a time series sampled at
a given sampling interval corresponds to what is known in Fourier analysis
as the Nyquist frequency. If an eigenvalue lk is real and positive, the
period Tk is infinite, and the AR(1) model (7) for the associated time series
of coefficients vn

~k! is called a stochastically forced relaxator.
Thus, a coefficient vn

~k! in the expansion (4) of the state vectors vn in terms
of eigenmodes S :k represents, depending on the eigenvalue lk, either a
stochastically forced oscillator or a stochastically forced relaxator. The
oscillators and relaxators are coupled only via the covariances of the noise,
the stochastic forcing. The coefficients vn

~k! can be viewed as the amplitudes
of the eigenmodes S :k if the eigenmodes are normalized such that iS :ki2 5 1.
To obtain a unique representation of the eigenmodes S :k, we stipulate that
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the real parts X 5 Re S and the imaginary parts Y 5 Im S of the eigen-
modes S :k 5 X :k 1 iY :k satisfy the normalization conditions

X :k
T X:k 1 Y :k

T Y:k 5 1, X :k
T Y:k 5 0, Y :k

T Y:k , X :k
T X:k. (10)

The normalized eigenmodes S :k represent aspects of the system under
consideration whose amplitudes vn

~k! oscillate with a characteristic period
Tk and would, in the absence of stochastic forcing, decay towards zero with
a characteristic damping time tk. Only oscillatory modes with a finite
period have imaginary parts. The real parts and the imaginary parts of
oscillatory modes represent aspects of the system under consideration in
different phases of an oscillation, with a phase lag of p / 2 between real part
and imaginary part. In the geosciences, for example, the state vectors vn

might represent the Earth’s surface temperature field on a spatial grid,
with each state vector component representing the temperature at a grid
point. The eigenmodes would then represent structures of the surface
temperature field that oscillate and decay with characteristic periods and
damping times. In a principal oscillation pattern analysis, the spatial
structures of the real parts and of the imaginary parts of the eigenmodes
are analyzed graphically. It is in this way that, in the geosciences, eigen-
modes of AR(1) models are analyzed to infer dynamical characteristics of a
complex system (see Storch and Zwiers [1999] for more details, including
the relationship between the periods of the eigenmodes and the maxima of
the power spectrum of an AR model).

Dynamical Importance of Modes. The magnitudes of the amplitudes vn
~k!

of the normalized eigenmodes S :k indicate the dynamical importance of the
various relaxation and oscillation modes. The variance of an amplitude vn

~k!,
or the excitation

sk [ ^?vn
~k!?2&, (11)

is a measure of the dynamical importance of an eigenmode S :k.
The excitations can be computed from the coefficient matrix A and from

the noise covariance matrix C. The covariance matrix S 5 ^vn vn
T& of the

state vectors vn satisfies [Lütkepohl 1993, Chapter 2.1.4]

S 5 ASAT 1 C. (12)

Upon substitution of the eigendecomposition A 5 SLS21 and of the trans-
formed noise covariance matrix C 5 SC9S†, the state covariance matrix
becomes

S 5 SS9S† (13)
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with a transformed state covariance matrix S9 that is a solution of the
linear matrix equation S9 5 LS9L† 1 C9. Since the eigenvalue matrix L is
diagonal, this matrix equation can be written componentwise as

~1 2 lkll
*!S9kl 5 C9kl.

For a stable AR model for which the absolute values of all eigenvalues are
less than one, ?lk? , 1, this equation can be solved for the transformed
state covariance matrix S9, whose diagonal elements S9kk are the excitations
sk, the variances of the amplitudes vn

~k!. In terms of the transformed noise
covariance matrix C9 and of the eigenvalues lk, the excitations can hence
be written as

sk 5
C9kk

1 2 ?lk?
2
, (14)

an expression that can be interpreted as the ratio of the forcing strength
C9kk over the damping 1 2 ?lk?

2 of an eigenmode S :k.
The suggestion of measuring the dynamical importance of the modes in

terms of the excitations sk contrasts with traditional studies in which the
least damped eigenmodes of an AR(1) model were considered dynamically
the most important. That is, the eigenmodes for which the associated
eigenvalue had the greatest absolute value ?lk? were considered dynami-
cally the most important (e.g., see von Storch et al. [1995], Penland and
Sardeshmukh [1995], and von Storch and Zwiers [1999, Chapter 15], and
references therein). The tradition of viewing the least damped modes as the
dynamically most important ones comes from the analysis of modes of
deterministic linear systems, in which the least damped mode, if excited,
dominates the dynamics in the limit of long times. In the presence of
stochastic forcing, however, the weakly damped modes, if they are not
sufficiently excited by the noise, need not dominate the dynamics in the
limit of long times. The excitation sk therefore appears to be a more
appropriate measure of dynamical importance.

2.2 AR Models of Arbitrary Order

To generalize the eigendecomposition of AR models of first order to AR
models of arbitrary order, we exploit the fact that an m-variate AR~ p!
model

vn 5 O
l51

p

Alvn2l 1 «n, «n 5 noise~C!,

is equivalent to an AR(1) model
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ṽn 5 Ãṽn21 1 «̃n, «̃ 5 noise~C̃!,

with augmented state vectors and noise vectors

ṽn 5 1
vn

vn21···
vn2p11

2 [ Rmp and «̃n 5 1
«v

0
···
0

2 [ Rmp

and with a coefficient matrix (e.g., Honerkamp [1994, p. 426])

Ã 5 1
A1 A2 . . . Ap21 Ap

I 0 . . . 0 0
0 I . . . 0 0
0 0

·· · 0 0
0 0 . . . I 0

2 [ Rmp3mp. (15)

The noise covariance matrix

C̃ 5 ^«̃n «̃n
†& 5 S C 0

0 0 D [ Rmp3mp

of the equivalent AR(1) model is singular.
An AR(1) model that is equivalent to an AR(p) model can be decomposed

into eigenmodes according to the above decomposition of a general AR(1)

model. If the augmented coefficient matrix Ã is nondefective, its mp
eigenvectors form a basis of the vector space Rmp of the augmented state

vectors ṽn. As above, let S̃ be the nonsingular matrix whose columns S̃ :k are

the eigenvectors of the augmented coefficient matrix Ã 5 S̃LS̃21, and let L
be the associated diagonal matrix of eigenvalues lk (k 5 1, . . . , mp). In

terms of the eigenvectors S̃ :k of the augmented coefficient matrix Ã, the
augmented state vectors and noise vectors can be represented as linear
combinations

ṽn 5 O
k51

mp

ṽn
~k!S̃:k and «̃n 5 O

k51

mp

«̃n
~k!S̃:k. (16)

The dynamics of the coefficients ṽn
~k! in the expansion of the augmented

state vectors are governed by a system of mp univariate AR(1) models

ṽn
~k! 5 lkṽn21

~k! 1 «̃n
~k!, k 5 1, . . . , mp, (17)
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which are coupled only via the covariances ^ «̃n
~k!«̃m

~l!*& 5 dmnC̃9kl of the noise
coefficients. The covariance matrix of the noise coefficients is the trans-
formed noise covariance matrix

C̃9 5 S̃21C̃S̃2† (18)

of the equivalent AR(1) model. Thus, the augmented time series ṽn can be
decomposed, just as above, into mp oscillators and relaxators with

mp-dimensional eigenmodes S̃ :k.

However, because the augmented coefficient matrix Ã has the Frobenius

structure (15), the augmented eigenmodes S̃ :k have a structure that makes
it possible to decompose the original time series vn into oscillators and
relaxators with m-dimensional modes, instead of the augmented

mp-dimensional modes S̃ :k. The eigenvectors S̃ :k of the augmented coeffi-

cient matrix Ã have the structure

S̃:k 5 1
lk

p21S:k···
lkS:k

S:k

2
with an m-dimensional vector S :k (cf. Wilkinson’s [1965, Chapter 1.30]
discussion of eigenmodes of higher-order differential equations). Substitut-

ing this expression for the augmented eigenvectors S̃ :k into the expansions
(16) of the augmented state vectors and noise vectors and introducing the
renormalized coefficients

vn
~k! [ lk

p21ṽn
~k! and «n

~k! [ lk
p21«̃n

~k!,

one finds that the original m-dimensional state vectors vn and noise vectors
«n can be represented as linear combinations

vn 5 O
k51

mp

vn
~k!S:k and «n 5 O

k51

mp

«n
~k!S:k (19)

of the m-dimensional vectors S :k. Like the dynamics (17) of the coefficients
ṽn

~k! in the expansion of the augmented state vectors ṽn, the dynamics of the
coefficients vn

~k! in the expansion of the original state vectors vn are
governed by a system of mp univariate AR(1) models

vn
~k! 5 lkvn21

~k! 1 «n
~k!, k 5 1, . . . , mp, (20)
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which are coupled only via the covariances ^«m
~k!«n

~l!*& 5 dmn~lkl l
*!p21C̃9kl of

the noise coefficients.
For AR~ p! models of arbitrary order, the expansions (19) of the state

vectors vn and of the noise vectors «n and the dynamics (20) of the
expansion coefficients parallel the expansions (4) of the state vectors and of
the noise vectors and the dynamics (7) of the expansion coefficients for
AR(1) models. In the decomposition of an AR~ p! model of arbitrary order,
the AR(1) models (20) for the dynamics of the expansion coefficients vn

~k! can
be viewed, as in the decomposition of AR(1) models, as oscillators or
relaxators, depending on the eigenvalue lk of the augmented coefficient

matrix Ã. The m-dimensional vectors S :k can be viewed as eigenmodes that
possess characteristic damping times (8) and periods (9). To obtain a
unique representation of the eigenmodes S :k, we stipulate, as an extension

of the normalization (10) in the first-order case, that the real parts X̃ 5

Re S̃ and the imaginary parts Ỹ 5 Im S̃ of the eigenvectors S̃ :k 5 X̃ :k 1 iỸ :k

of the augmented coefficient matrix Ã satisfy the normalization conditions

X̃:k
T X̃:k 1 Ỹ:k

T Ỹ:k 5 1, X̃:k
T Ỹ:k 5 0, Ỹ:k

T Ỹ:k , X̃:k
T X̃:k. (21)

With this normalization of the eigenvectors S̃ :k, the coefficients ṽn
~k! in the

expansion of the augmented state vectors ṽn indicate the amplitudes of the
modes S :k. The variances of these amplitudes, the excitations sk 5
^?ṽn

~k!?2& 5 ?lk?
2~12p!^?vn

~k!?2&, are measures of the dynamical importance of
the modes. In analogy to the excitations (14) of modes of AR(1) models, the
excitations of modes of AR~ p! models can be expressed as

sk 5
C̃9kk

1 2 ?lk?
2
,

where C̃9kk is a diagonal element of the transformed noise covariance matrix
(18).

Thus, an AR~ p! model of arbitrary order can be decomposed, just like an
AR(1) model, into mp oscillators and relaxators with m-dimensional eigen-
modes S :k. To infer dynamical characteristics of a complex system, the
eigenmodes of AR~ p! models can be analyzed in the same way as the
eigenmodes of AR(1) models. All results for AR(1) models have a direct
extension to AR~ p! models. The only difference between the eigendecompo-
sition of AR(1) models and the eigendecomposition of higher-order AR~ p!
models is that higher-order models possess a larger number of eigenmodes,
which span the vector space of the state vectors vn but are not, as in the
first-order case, linearly independent.

The ARFIT module armode computes the eigenmodes S :k of AR~ p!
models of arbitrary order by an eigendecomposition of the coefficient matrix
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Ã of an equivalent AR(1) model. It also computes the periods, damping
times, and excitations of the eigenmodes.

3. STEPWISE LEAST SQUARES ESTIMATION FOR AR MODELS

To analyze the eigenmodes of an AR~ p! model fitted to a time series of
observations of a complex system, the unknown model order p and the
unknown model parameters A1, . . . , Ap, w, and C must first be estimated.
The model order is commonly estimated as the optimizer of what is called
an order selection criterion, a function that depends on the noise covariance

matrix Ĉ of an estimated AR~ p! model and that penalizes the overparam-

eterization of a model [Lütkepohl 1993, Chapter 4.3]. (The hat-accent Â
designates an estimate of the quantity A.) To determine the model order
popt that optimizes the order selection criterion, the noise covariance
matrices C are estimated and the order selection criterion is evaluated for
AR~ p! models of successive orders pmin # p # pmax. If the parameters A1,
. . . , Ap and w are not estimated along with the noise covariance matrix C,
they are then estimated for a model of the optimum order popt.

Both asymptotic theory and simulations indicate that, if the coefficient
matrices A1, . . . , Ap, and the intercept vector w of an AR model are
estimated with the method of least squares, the residual covariance matrix
Ĉ of the estimated model is a fairly reliable estimator of the noise
covariance matrix C and hence can be used in order selection criteria
[Tjøstheim and Paulsen 1983; Paulsen and Tjøstheim 1985; Mentz et al.
1998].1 The least squares estimates of AR parameters are obtained by
casting an AR model in the form of an ordinary regression model and
estimating the parameters of the regression model with the method of least
squares [Lütkepohl 1993, Chapter 3]. Numerically, the least squares prob-
lem for the ordinary regression model can be solved with standard methods
that involve the factorization of a data matrix (e.g., Björck [1996, Chapter
2]). In what follows, we will present a stepwise least squares algorithm
with which, in a computationally efficient and stable manner, the parame-
ters of an AR model can be estimated and an order selection criterion can
be evaluated for AR~ p! models of successive orders pmin # p # pmax. Start-
ing from a review of how the least squares estimates for an AR~ p! model of
fixed order p can be computed via a QR factorization of a data matrix, we
will show how, from the same QR factorization, approximate least squares
estimates for models of lower order p9 , p can be obtained.

1Although the residual covariance matrix of an AR model whose parameters are estimated
with the method of least squares is not itself a least squares estimate of the noise covariance
matrix, we will, as is common practice, refer to this residual covariance matrix as a least
squares estimate.
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3.1 Least Squares Estimates for an AR Model of Fixed Order

Suppose that an m-dimensional time series of N 1 p state vectors vn

~n 5 1 2 p, . . . , N! is available, the time series consisting of p pre-
sample state vectors v12p, . . . , v0 and N state vectors v1, . . . , vN that
form what we call the effective sample. The parameters A1, . . . , Ap, w,
and C of an AR~ p! model of fixed order p are to be estimated.

An AR~ p! model can be cast in the form of a regression model

vn 5 Bun 1 «n, «n 5 noise~C!, n 5 1, . . . , N, (22)

with parameter matrix

B 5 ~w A1 · · · Ap! (23)

and with predictors

un 5 1
1

vn21···
vn2p

2 (24)

of dimension np 5 mp 1 1. Casting an AR model in the form of a regres-
sion model is an approximation in that in a regression model, the predictors
un are assumed to be constant, whereas the state vectors un of an AR
process are a realization of a stochastic process. The approximation of
casting an AR model into the form of a regression model amounts to
treating the first predictor

u1 5 1
1
v0···

v12p

2
as a vector of constant initial values (cf. Wei [1994, Chapter 7.2.1]). What
are unconditional parameter estimates for the regression model are there-
fore conditional parameter estimates for the AR model, conditional on the
first p pre-sample state vectors v12p, . . . , v0 being constant. But since the
relative influence of the initial condition on the parameter estimates
decreases as the sample size N increases, the parameter estimates for the
regression model are still consistent and asymptotically unbiased estimates
for the AR model (e.g., Lütkepohl [1993, Chapter 3]).

In terms of the moment matrices

U 5 O
n51

N

un un
T, V 5 O

n51

N

vn vn
T, W 5 O

n51

N

vn un
T, (25)
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the least squares estimate of the parameter matrix B can be written as

B̂ 5 WU21. (26)

The residual covariance matrix

Ĉ 5
1

N 2 np
O

n51

N

«̂n «̂n
T with «̂n 5 vn 2 B̂un

is an estimate of the noise covariance matrix C and can be expressed as

Ĉ 5
1

N 2 np

~V 2 WU21W T!. (27)

A derivation of the least squares estimators and a discussion of their
properties can be found, for example, in Lütkepohl [1993, Chapter 3].

The residual covariance matrix Ĉ is proportional to a Schur complement
of the matrix

G 5 S U WT

W V D 5 O
n51

N S un

vn
D~un

T vn
T!,

which is the moment matrix G 5 K TK belonging to the data matrix

K 5 1 u1
T v1

T

···
···

uN
T vN

T 2. (28)

The least squares estimates can be computed from a QR factorization of
the data matrix

K 5 QR, (29)

with an orthogonal matrix Q and an upper triangular matrix

R 5 S R11 R12

0 R22
D.

The QR factorization of the data matrix K leads to the Cholesky factoriza-
tion G 5 K TK 5 RTR of the moment matrix,

S U WT

W V D 5 RTR 5 S R11
T R11 R11

T R12

R12
T R11 R12

T R12 1 R22
T R22

D, (30)

and from this Cholesky factorization, one finds the representation
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B̂ 5 ~R11
21R12!

T and Ĉ 5
1

N 2 np

R22
T R22 (31)

for the least squares estimates of the parameter matrix B and of the noise

covariance matrix C. The estimated parameter matrix B̂ is obtained as the
solution of a triangular system of equations, and the residual covariance

matrix Ĉ is given in a factored form that shows explicitly that the residual
covariance matrix is positive semidefinite.

If the moment matrix G 5 K TK is ill-conditioned, the effect of rounding
errors and data errors on the parameter estimates can be reduced by
computing the parameter estimates (31) not from a Cholesky factorization
(30) of the moment matrix G, but from an analogous Cholesky factorization
of a regularized moment matrix G 1 dD2, where D2 is a positive definite
diagonal matrix and d is a regularization parameter (e.g., Hansen [1997]).
A Cholesky factorization of the regularized moment matrix G 1 dD2 5
RTR can be computed via a QR factorization of the augmented data matrix

S K
Îd D D 5 QR. (32)

Rounding errors and data errors have a lesser effect on the estimates (31)
computed from the upper triangular factor R of this QR factorization. The
diagonal matrix D might be chosen to consist of the Euclidean norms of the
columns of the data matrix, D 5 Diag~i K :ji2!. The regularization parame-
ter d, as a heuristic, might be chosen to be a multiple ~q2 1 q 1 1!h of the
machine precision h, the multiplication factor q2 1 q 1 1 depending on
the dimension q 5 np 1 m of the moment matrix G (cf. Higham’s [1996]
Theorem 10.7, which implies that with such a regularization the direct
computation of a Cholesky factorization of the regularized moment matrix
G 1 dD2 would be well-posed). The ARFIT module arqr computes such a
regularized QR factorization for AR models.

If the observational error of the data is unknown but dominates the
rounding error, the regularization parameter can be estimated with adap-
tive regularization techniques. In this case, however, the QR factorization
(32) should be replaced by a singular value decomposition of the rescaled
data matrix KD21, because the singular value decomposition can be used
more efficiently with adaptive regularization methods (e.g., see Hansen
[1997] and Neumaier [1998]).

3.2 Downdating the Least Squares Estimates

To select the order of an AR model, the residual covariance matrix Ĉ must
be computed and an order selection criterion must be evaluated for AR~ p!
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models of successive orders pmin # p # pmax. Order selection criteria are
usually functions of the logarithm of the determinant

lp 5 log det Dp

of the residual cross-product matrix

Dp 5 ~N 2 np!Ĉ 5 R22
T R22.

For example, Schwarz’s [1978] Bayesian Criterion (SBC) can be written as

SBC~p! 5
lp

m
2 S1 2

np

NDlog N,

and the logarithm of Akaike’s [1971] Final Prediction Error (FPE) criterion
as

FPE~p! 5
lp

m
2 log

N~N 2 np!

N 1 np

.

(These and other order selection criteria and their properties are discussed,
for example, by Lütkepohl [1985; 1993, Chapter 4].) Instead of computing
the residual cross-product matrix Dp by a separate QR factorization for
each order p for which an order selection criterion is to be evaluated, one
can compute an approximation of the residual cross-product matrix Dp for a
model of order p , pmax by downdating the QR factorization for a model of
order pmax. (For a general discussion of updating and downdating least
squares problems, see Björck [1996, Chapter 3].)

To downdate the QR factorization for a model of order p to a structurally
similar factorization for a model of order p9 5 p 2 1, one exploits the
structure

K 5 ~K1 K2!, K1 5 1 u1
T

···
uN

T 2, K2 5 1 v1
T

···
vN

T 2
of the data matrix (28). A data matrix K9 5 ~K91 K2! for a model of order
p9 5 p 2 1 follows, approximately, from the data matrix K 5 ~K1 K2! for a
model of order p by removing from the submatrix K1 5 ~K91 K991 ! of the
predictors un the m trailing columns K991 . The downdated data matrix K9 is
only approximately equal to the least squares data matrix (28) for a model
of order p9 because in the downdated data matrix K9, the first available
state vector v12p is not included. When parameter estimates are computed
from the downdated data matrix K9, a sample of the same effective size N is
assumed both for the least squares estimates of order p and the least
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squares estimates of order p9 5 p 2 1, although in the case of the lower
order p9, the pre-sample state vector v0 could become part of the effective
sample so that a sample of effective size N 1 1 would be available. The
relative loss of accuracy that this approximation entails decreases with
increasing sample size N.

A factorization of the downdated data matrix K9 follows from the QR
factorization of the original data matrix K if one partitions the submatrices
R11 and R12 of the triangular factor R, considering the m trailing rows and
columns of R11 and the m trailing rows of R12 separately,

R11 5 S R911 R9911

0 R99911
D, R12 5 S R912

R9912
D.

With the thus partitioned triangular factor R, the QR factorization (29) of
the data matrix becomes

K 5 ~K91 K991 K2! 5 Q1 R911 R9911 R912

0 R99911 R9912

0 0 R22
2.

Dropping the m columns belonging to the submatrix K991 , one obtains a
factorization of the downdated data matrix

K9 5 ~K91 K2! 5 Q1 R911 R912

0 R9912

0 R22
2 5 QS R911 R912

0 R22
D

where

R922 5 S R9912

R22
D.

This downdated factorization has the same block-structure as the QR
factorization (29) of the original data matrix K, but the submatrix R922 in
the downdated factorization is not triangular. The factorization of the
downdated data matrix K9 thus is not a QR factorization. That the
submatrix R922 is not triangular, however, does not affect the form of the
least squares estimates (31), which, for a model of order p9 5 p 2 1, can be
computed from the downdated factorization in the same way as they are
computed from the original QR factorization for a model of order p.

From the downdated factorization of the data matrix, one can obtain, for
the evaluation of order selection criteria, downdating formulas for the
logarithm lp 5 log det Dp of the determinant of the residual cross-product
matrix Dp. The factorization of the downdated data matrix leads to the
residual cross-product matrix
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Dp9 5 R922
T R922 5 R22

T R22 1 R9912
T R9912 ,

from which, with the notation

Rp 5 R9912 ,

the downdating formula

Dp21 5 Dp 1 Rp
T Rp

for the residual cross-product matrix follows. Because the determinant of
the right-hand side of this formula can be brought into the form [Anderson
1984, Theorem A.3.2]

det~Dp 1 Rp
T Rp! 5 det Dp z det~I 1 RpDp

21Rp
T!,

the downdating formula for the determinant term lp 5 log det Dp becomes

lp21 5 lp 1 log det ~I 1 RpDp
21Rp

T!.

This downdate can be computed from a Cholesky factorization

I 1 RpDp
21Rp

T 5 Lp Lp
T (33)

as

lp21 5 lp 1 2 log det Lp, (34)

the determinant of the Cholesky factor Lp being the product of the diagonal
elements.

This downdating procedure can be iterated, starting from a QR factoriza-
tion for a model of order pmax and stepwise downdating the factorization
and the determinant term lp appearing in the order selection criteria until
the minimum order pmin is reached. To downdate the inverse cross-product
matrix Dp

21, which is needed in the Cholesky factorization (33), one can use
the Woodbury formula [Björck 1996, Chapter 3]

Dp21
21 5 ~Dp 1 Rp

T Rp!
21 5 Dp

21 2 Dp
21Rp

T~I 1 RpDp
21Rp

T!21RpDp
21

and compute the downdated inverse Dp21
21 from the Cholesky factorization

(33) via

Np 5 Lp
21RpDp

21, (35)

Dp21
21 5 Dp

21 2 N p
T Np. (36)

With the downdating scheme (33)–(36), an order selection criterion such as
SBC or FPE, given a QR factorization for a model of order pmax, can be
evaluated for models of order pmax21, . . . , pmin, whereby for the model of
order p, the first pmax 2 p state vectors are ignored.

Multivariate Autoregressive Models • 43

ACM Transactions on Mathematical Software, Vol. 27, No. 1, March 2001.



After evaluating the order selection criterion for a sequence of models
and determining an optimum order popt, one finds the least squares
parameter estimates (31) for the model of the optimum order by replacing
the maximally sized submatrices R11 and R12 of the triangular factor R by
their leading submatrices of size npopt. If the available time series is short
and the assumed maximum model order pmax is much larger than the
selected optimum order popt, computing the parameters of the AR model of
optimum order popt from the downdated factorization of the model of
maximum order pmax, and thus ignoring ~ pmax 2 popt! available state vec-
tors, might entail a significant loss of information. To improve the accuracy
of the parameter estimates in such cases, the parameters of the model of
optimum order popt can be computed from a second QR factorization, a QR
factorization for a model of order p 5 popt.

The above downdating scheme is applicable both to the QR factorization
of the data matrix K and to the regularized QR factorization of the
augmented data matrix (32). The ARFIT module arord evaluates order
selection criteria by downdating the regularized QR factorization per-
formed with the module arqr. The driver module arfit determines the
optimum model order and computes the AR parameters for the model of the
optimum order.

3.3 Computational Complexity of the Stepwise Least Squares Algorithm

The data matrix whose QR factorization is to be computed is of size N9 3
~npmax 1 m!, where the number of rows N9 of this matrix is equal to the
sample size N if the least squares estimates are not regularized, or the
number of rows N9 is equal to N 1 npmax 1 m if the least squares estimates
are regularized by computing the QR factorization of the augmented data
matrix (32). Computing the QR factorization requires, to leading order,
O~N9m2pmax

2 ! operations.
In traditional algorithms for estimating parameters of AR models, a

separate factorization would be computed for each order p for which an
order selection criterion is to be evaluated. In the stepwise least squares
algorithm, the downdates (33)–(36) require O~m3! operations for each order
p for which an order selection criterion is to be evaluated. Since N9 $ m,
the downdating process for each order p requires fewer operations than a
new QR factorization. If the number of rows N9 of the data matrix whose
QR factorization is computed is much greater than the dimension m of the
state vectors, the number of operations required for the downdating process
becomes negligible compared with the number of operations required for
the QR factorization. With the stepwise least squares algorithm, then, the
order and the parameters of an AR model can be estimated about ~ pmax 2
pmin11!-times faster than with traditional least squares algorithms that
require ~ pmax 2 pmin11! separate QR factorizations. Since deleting columns
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of a matrix does not decrease the smallest singular value of the matrix, the
stepwise least squares algorithm is a numerically stable procedure (cf.
Björck [1996, Chapter 3.2]).

4. CONFIDENCE INTERVALS

Under weak conditions on the distribution of the noise vectors «n of the AR
model, the least squares estimator of the AR coefficient matrices A1, . . . ,
Ap and of the intercept vector w is consistent and asymptotically normal
(e.g., Lütkepohl [1993, Chapter 3.2]). Let the AR parameters B 5 ~w A1

· · · Ap! [ Rm3np be arranged into a parameter vector xB by stacking
adjacent columns B :j of the parameter matrix B,

xB 5 1 B:1···
B:np

2 [ Rmnp.

Asymptotically, in the limit of large sample sizes N, the estimation errors
xB̂ 2 xB are normally distributed with mean zero and with a covariance
matrix SB that depends on the noise covariance matrix C and on the
moment matrix ^un un

T& of the predictors un in the regression model (22)
(e.g., Lütkepohl [1993, Chapter 3.2.2]). Substituting the least squares
estimate Ĉ of the noise covariance matrix and the sample moment matrix
U of the predictors un for the unknown population quantities, one obtains,
for the least squares estimator xB̂, the covariance matrix estimate

ŜB 5 U21 R Ĉ, (37)

where A R B denotes the Kronecker product of the matrices A and B.
Basing inferences for finite samples on the asymptotic distribution of the

least squares estimator, one can establish approximate confidence intervals
for the AR coefficients, for the intercept vector, and for the eigenmodes,
periods, and damping times derived from the AR coefficients. A confidence
interval for an element f [ ~xB! l of the parameter matrix B can be
constructed from the distribution of the t-ratio

t 5
f6

ŝf

, (38)

the ratio of the estimation error f6 [ f̂ 2 f of the least squares estimate
f̂ 5 ~xB̂! l 5 B̂jk over the square root of the estimated variance

ŝf
2 [ ~ŜB!ll 5 ~U21!kkĈjj, l 5 m~k 2 1! 1 j, (39)
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of the least squares estimator. For the construction of confidence intervals,
it is common practice to assume that the t-ratio (38) follows Student’s t
distribution with N 2 np degrees of freedom (e.g., Lütkepohl [1993, Chap-
ter 3.2]). To be sure, this assumption is justified only asymptotically, but
for lack of finite-sample statistics, it is commonly made. Assuming a t
distribution for the t-ratios yields, for the parameter f, the 100a% confi-

dence limits f̂ 6f̂6 with margin of error

f̂6 5 t~N 2 np, ~1 1 a! /2!ŝf, (40)

where t~d, b! is the b-quantile of a t distribution with d degrees of
freedom (cf. Draper and Smith [1981, Chapter 1.4]). From the estimated
variance (39) of the least squares estimator, one finds that the margin of

error of a parameter estimate f̂ 5 ~xB̂! l 5 B̂jk takes the form

f̂6 5 t~N 2 np, ~1 1 a! /2!Î~U21!kkĈjj. (41)

The ARFIT module arconf uses this expression to compute approximate

confidence limits f̂ 6f̂6 for the elements of the AR coefficient matrices and
of the intercept vector.

Establishing confidence intervals for the eigenmodes and their periods
and damping times is complicated by the fact that these quantities are
nonlinear functions of the AR coefficients. Whereas for certain random
matrices—for symmetric Wishart matrices, for example [Anderson 1984,
Chapter 13]—some properties of the distributions of eigenvectors and
eigenvalues are known, no analytical expressions for the distributions of
eigenvalues and eigenvectors appear to be known for nonsymmetric Gaus-
sian random matrices with correlated elements. For the estimation of
confidence intervals for the eigenmodes and their periods and damping
times, we must therefore resort to additional approximations that go
beyond the asymptotic approximation invoked in constructing the approxi-
mate confidence intervals for the AR coefficients.

Consider a real-valued function f 5 f~xB! that depends continuously on

the AR parameters xB, and let the estimate f̂ [ f~xB̂̂! be the value of the
function f at the least squares estimates xB̂ of the AR parameters xB. The
function f may be, for example, the real part or the imaginary part of a
component of an eigenmode, or a period or damping time associated with

an eigenmode. Linearizing the function f about the estimate f̂ leads to

f̂ 2 f ' ~¹f̂!T~xB̂ 2 xB!, where ¹f̂ denotes the gradient of f~xB! at the
estimate xB 5 xB̂. From this linearization, it follows that the variance s f

2

[ ^~f̂ 2 f!2& of the estimator function f̂ can be approximated as

s f
2 ' ^~¹f̂!T~xB̂ 2 xB!~xB̂ 2 xB!T ¹f̂& 5 ~¹f̂!T SB~¹f̂!, (42)
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where SB is the covariance matrix of the least squares estimator xB̂. If the
function f is linear in the parameters xB, the relation (42) between the

variance s f
2 of the estimator function f̂ and the covariance matrix SB of the

estimator xB̂ holds exactly. But if the function f is nonlinear, as it is, for
example, when f stands for a component of an eigenmode, the relation (42)
holds only approximately, up to higher-order terms.

Substituting the asymptotic covariance matrix (37) into the expression

(42) for the variance of the estimator function f̂ gives a variance estimate

ŝf
2 5 ~¹f̂!T ŜB~¹f̂! (43)

that can be used to establish confidence intervals. If the function f is

nonlinear, the t-ratio t 5 f6 / ŝf
2 of the estimation error f6 5 f̂ 2 f over

the square root of the estimated variance ŝf
2 generally does not follow a t

distribution, not even asymptotically. But assuming that the t-ratio follows
a t distribution is still a plausible heuristic for constructing approximate
confidence intervals. Generalizing the above construction of confidence
limits for the AR parameters, we therefore compute approximate confi-

dence limits f̂ 6f̂6 for functions f~xB! of the AR parameters with the
estimator variance (43) and with the margin of error (40).

The ARFIT module armode thus establishes approximate confidence
intervals for the real parts and the imaginary parts of the individual
components of the eigenmodes, and for the periods and the damping times
associated with the eigenmodes. The closed-form expressions for the gradi-

ents ¹f̂ of the eigenmodes, periods, and damping times, which are required
for the computation of the estimator variance (43), are derived in the
Appendix.

5. NUMERICAL EXAMPLE

To illustrate the least squares estimation of AR parameters and to test the
quality of the approximate confidence intervals for the AR parameters and
for the eigenmodes, periods, and damping times, we generated time series
data by simulation of the bivariate AR(2) process

vn 5 w 1 A1vn21 1 A2vn22 1 «n, «n 5 WN~0, C!, n 5 1, . . . , N (44)

with intercept vector

w 5 S 0.25
0.10 D, (45)

coefficient matrices

A1 5 S 0.40 1.20
0.30 0.70 D, A2 5 S 0.35 20.30

20.40 20.50 D, (46)
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and noise covariance matrix

C 5 S 1.00 0.50
0.50 1.50 D. (47)

The pseudorandom vectors «n 5 WN~0, C! are simulated Gaussian white
noise vectors with mean zero and covariance matrix C. Ensembles of time
series of effective length N 5 25, 50, 100, and 400 were generated, the
ensembles consisting of 20000 time series for N 5 25; 10000 time series
for N 5 50; and 5000 time series for N 5 100 and N 5 400. With the
methods of the preceding sections, the AR(2) parameters were estimated
from the simulated time series, the eigendecomposition of the estimated
models was computed, and approximate 95% confidence intervals were
constructed for the AR parameters and for the eigenmodes, periods, and
damping times.

Table I shows, for each AR parameter f 5 Bjk, the median of the least

squares parameter estimates f̂ 5 B̂jk and the median of the margins of

error f̂6 belonging to the approximate 95% confidence intervals (41).
Included in the table are the absolute values of the 2.5th percentile f2 and
of the 97.5th percentile f1 of the simulated distribution of the estimation

Table I. Least Squares Estimates and 95% Margins of Error for the Parameters of the
Bivariate AR(2) Model (44)

f f̂ 6f̂6 f2 f1 q95 f̂ 6f̂6 f2 f1 q95

N 5 25 N 5 50

w1 0.289 60.506 0.451 0.820 2.13 0.266 60.328 0.289 0.453 1.67
w2 0.139 60.621 0.574 0.969 2.06 0.115 60.402 0.356 0.548 1.65

~A1!11 0.326 60.391 0.404 0.312 1.29 0.368 60.250 0.256 0.215 1.19
~A1!21 0.223 60.475 0.564 0.370 1.57 0.260 60.305 0.347 0.258 1.38
~A1!12 1.152 60.329 0.380 0.261 1.51 1.175 60.215 0.236 0.185 1.32
~A1!22 0.629 60.407 0.437 0.310 1.30 0.667 60.263 0.280 0.231 1.21
~A2!11 0.353 60.292 0.305 0.231 1.42 0.351 60.191 0.205 0.162 1.33
~A2!21 20.402 60.356 0.320 0.372 1.47 20.397 60.234 0.210 0.250 1.35
~A2!12 20.206 60.443 0.283 0.543 1.51 20.256 60.283 0.207 0.340 1.39
~A2!22 20.418 60.453 0.374 0.640 1.45 20.460 60.347 0.270 0.398 1.31

N 5 100 N 5 400

w1 0.256 60.224 0.198 0.286 1.46 0.252 60.110 0.099 0.123 1.20
w2 0.107 60.247 0.247 0.327 1.37 0.104 60.134 0.125 0.146 1.17

~A1!11 0.384 60.168 0.170 0.152 1.13 0.396 60.082 0.082 0.077 1.06
~A1!21 0.281 60.206 0.227 0.180 1.27 0.295 60.100 0.106 0.092 1.14
~A1!12 1.188 60.146 0.160 0.125 1.24 1.197 60.071 0.077 0.067 1.15
~A1!22 0.682 60.178 0.182 0.160 1.11 0.695 60.087 0.092 0.082 1.10
~A2!11 0.352 60.131 0.142 0.114 1.26 0.350 60.064 0.066 0.060 1.11
~A2!21 20.401 60.159 0.150 0.166 1.23 20.400 60.078 0.077 0.081 1.13
~A2!12 20.276 60.192 0.149 0.215 1.24 20.294 60.093 0.085 0.101 1.15
~A2!22 20.479 60.234 0.199 0.264 1.24 20.494 60.113 0.102 0.124 1.15
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errors f̂ 2 f. Ninety-five percent of the least squares parameter estimates
f̂ lie between the limits f 2 f2 and f 1 f1. The quantity

q95 5 95th percentile of H~f1, f2!

f̂6

J
is the 95th percentile of the ratio of the simulated margins of error f1 and
f2 over the approximate margins of error f̂6. The quantity q95 is a
measure of how much the approximate margin of error f̂6 can underesti-
mate the simulated margins of error f2 and f1.

The simulation results in Table I show that the least squares estimates
of the AR parameters are biased when the sample size is small (cf.
Tjøstheim and Paulsen [1983] and Mentz et al. [1998]). Consistent with
asymptotic theoretical results on the bias of AR parameter estimates
[Tjøstheim and Paulsen 1983], the bias of the least squares estimates in the
simulations decreases roughly as 1 / N as the sample size N increases. The
bias of the estimates affects the reliability of the confidence intervals
because in the approximate confidence intervals f̂ 6f̂6, centered on the

least squares estimate f̂, the bias is not taken into account. The bias of the
estimates is one of the reasons why, for each parameter f, the median of

the approximate 95% margins of error f̂6 differs from the absolute values
f2 and f1 of the 2.5th percentile and of the 97.5th percentile of the
simulated estimation error distribution (cf. Nankervis and Savin [1988]).
For small sample sizes N, the absolute values f2 and f1 of the 2.5th
percentile and of the 97.5th percentile of the estimation error distribution
differ considerably, for N 5 25 by nearly a factor of two. Nevertheless, the
median of the approximate margins of error f̂6 lies, for each parameter f,
in between the absolute values of the percentiles f2 and f1 of the
simulated estimation error distribution. The approximate margins of error
f̂6 can thus be used as rough indicators of the magnitudes of the estima-
tion errors. But as the values of q95 suggest, the approximate margins of
error are reliable indicators of the magnitudes of the estimation errors only
when the sample size N is large.

We carried out an analogous analysis for the eigendecomposition of the
estimated AR(2) models. Imposing the normalization conditions (21) on the
eigenvectors

S̃:k 5 S lkS:k

S:k
D

of the augmented coefficient matrix

Ã 5 S A1 A2

I 0 D
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that consists of the above coefficient matrices (46), one finds, for the
simulated process (44), the eigenmodes

S:1 5 S 0.750
20.301 D, S:2 5 S 0.768

20.362 D, S:3, 4 5 S 0.495 60.315i
0.323 70.397i D, (48)

and the eigenvalues

l1 5 20.728, l2 5 0.623, l3, 4 5 0.603 60.536i. (49)

Associated with the eigenmodes are the periods

T1 5 2, T2 3 `, T3, 4 5 8.643, (50)

and the damping times

t1 5 3.152, t2 5 2.114, t3, 4 5 4.647. (51)

The eigenmodes, periods, and damping times obtained from the ensembles
of estimated models were compared with the eigenmodes, periods, and
damping times of the simulated process.

Tables II and III show, for functions f~xB! of the AR parameters B, the

median of the estimates f̂ 5 f~xB̂̂! and the median of the margins of error

f̂6 belonging to the approximate 95% confidence intervals (40). The
function f stands for a real part Re Sjk or an imaginary part Im Sjk of a
component Sjk of an eigenmode, or for a period Tk or a damping time tk. As
in Table I, the symbols f2 and f1 refer to the absolute values of the 2.5th
percentile and of the 97.5th percentile of the simulated distribution of the

Table II. Estimates and 95% Margins of Error for the Periods and Damping Times of the
Bivariate AR(2) Model (44)

f f̂ 6f̂6 f2 f1 q95 f̂ 6f̂6 f2 f1 q95

N 5 25 N 5 50

T1 2.000 60.000 0.000 0.000 NaN 2.000 60.000 0.000 0.000 NaN
t1 3.285 64.738 2.181 8.677 4.51 3.202 62.904 1.752 4.229 2.89
T2 Inf 60.000 0.000 0.000 NaN Inf 60.000 0.000 0.000 NaN
t2 1.309 62.491 1.841 4.901 4.26 1.694 62.140 1.646 3.121 3.38

T3,4 8.578 62.791 2.553 4.848 3.23 8.650 62.187 1.883 3.420 2.59
t3,4 6.449 69.807 2.557 21.942 5.43 5.484 65.172 2.112 8.204 2.97

N 5 100 N 5 400

T1 2.000 60.000 0.000 0.000 NaN 2.000 60.000 0.000 0.000 NaN
t1 3.147 61.922 1.402 2.638 2.22 3.143 60.928 0.802 1.047 1.44
T2 Inf 60.000 0.000 0.000 NaN Inf 60.000 0.000 0.000 NaN
t2 1.903 61.687 1.325 2.184 2.52 2.071 60.892 0.797 0.970 1.51

T3,4 8.643 61.644 1.436 2.405 2.18 8.646 60.889 0.798 1.049 1.51
t3,4 5.097 63.123 1.698 4.153 2.10 4.747 61.339 1.049 1.634 1.54
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estimation errors f̂ 2 f, and the quantity q95 is defined as above. A value
of “NaN” for the quantity q95 stands for the indefinite expression 0 / 0. A
value of infinity (“Inf”) results from the division of a nonzero number by
zero.

Which eigenmode, period, and damping time of an estimated AR(2) model
corresponds to which eigenmode, period, and damping time of the simu-
lated AR(2) process (44) is not always obvious, in particular not when the
effective time series length N is so small that the estimated parameters are
affected by large uncertainties. To establish the statistics in Tables II and

III, we matched the estimated eigenvalues l̂k with the eigenvalues lk of the
simulated process (49) by finding the permutation p of the indices 1,
. . . , 4 that minimized

O
k51

4

?l̂pk 2 lk?
2.

The estimated eigenmodes, periods, and damping times were matched with
the eigenmodes, periods, and damping times of the simulated process
according to the minimizing permutation of the indices. To remove the
remaining ambiguity of the sign of the estimated eigenmode Ŝ :pk belonging

to the eigenvalue l̂pk, we chose the sign of the estimated eigenmode Ŝ :pk

such as to minimize

iŜ:pk 2 S:ki2.

Table III. Estimated Eigenmodes (48)

f f̂ 6f̂6 f2 f1 q95 f̂ 6f̂6 f2 f1 q95

N 5 25 N 5 50

Re S11 0.738 60.162 0.139 0.149 1.44 0.745 60.108 0.090 0.115 1.41
Re S21 20.302 60.256 0.252 0.348 2.45 20.300 60.162 0.158 0.197 1.87
Re S12 0.701 60.488 0.926 0.065 12.78 0.742 60.248 0.626 0.042 15.37
Re S22 20.557 60.663 0.628 0.426 3.46 20.460 60.528 0.606 0.308 2.39
Re S13,4 0.477 60.231 0.566 0.176 4.48 0.486 60.195 0.433 0.156 3.97

?Im S13,4? 0.329 60.189 0.496 0.194 6.32 0.324 60.184 0.420 0.196 5.19
Re S23,4 0.348 60.259 0.628 0.293 5.62 0.338 60.242 0.519 0.264 4.61

?Im S23,4? 0.300 60.256 0.518 0.109 3.71 0.336 60.208 0.405 0.119 3.18

N 5 100 N 5 400

Re S11 0.749 60.074 0.066 0.082 1.34 0.750 60.037 0.034 0.038 1.16
Re S21 20.300 60.109 0.110 0.126 1.60 20.301 60.053 0.050 0.056 1.25
Re S12 0.754 60.137 0.367 0.033 13.91 0.766 60.053 0.110 0.023 6.82
Re S22 20.413 60.404 0.506 0.255 1.99 20.371 60.211 0.256 0.163 1.57
Re S13,4 0.492 60.162 0.307 0.135 3.38 0.494 60.104 0.136 0.093 1.97

?Im S13,4? 0.320 60.167 0.319 0.183 4.01 0.316 60.115 0.144 0.117 2.03
Re S23,4 0.331 60.212 0.377 0.236 3.46 0.324 60.141 0.174 0.139 1.90

?Im S23,4? 0.363 60.164 0.287 0.121 2.64 0.388 60.099 0.122 0.089 1.74
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This procedure allowed us to match a parameter f̂ of the eigendecomposi-
tion of an estimated model uniquely with a parameter f of the eigendecom-
position of the simulated process.

The estimation results in Tables II and III show that large samples of
time series data are required to estimate the eigenmodes, periods, and
damping rates of an AR model reliably. The approximate 95% margins of
error are rough indicators of the estimation errors most of the time, but the
approximate margins of error are always reliable as indicators of the
magnitude of the estimation error only when the sample size N is large.
Even for large samples, the approximate confidence intervals for the
eigenmodes, periods, and damping times are less accurate than the confi-
dence intervals for the AR parameters themselves. The median of the
approximate margins of error f̂6 does not always lie in between the
percentiles f2 and f1 of the simulated estimation error distribution. The
fact that the absolute values of the percentiles f2 and f1 in some cases
differ significantly even when the bias of the estimates for a parameter f is
small indicates that the distribution of the parameter estimates can be
skewed, showing that the t-ratio (38) does not follow Student’s t distribu-
tion. The lower accuracy of the confidence intervals for the eigendecompo-
sition compared with the accuracy of the confidence intervals for the AR
parameters themselves is a consequence of the linearization involved in the
construction of the approximate confidence intervals for the eigendecompo-
sition.

6. CONCLUSIONS

If a multivariate time series can be modeled adequately with an AR model,
dynamical characteristics of the time series can be examined by structural
analyses of the fitted AR model. The eigendecomposition discussed in this
paper is a structural analysis of AR models by means of which aspects of a
system that oscillate with certain periods and that relax towards a mean
state with certain damping times can be identified. Eigendecompositions of
AR(1) models have been used in the geosciences to characterize oscillations
in complex systems [von Storch and Zwiers 1999, Chapter 15]. We have
generalized the eigendecomposition of AR(1) models to AR~ p! models of
arbitrary order and have shown that the eigendecomposition of higher-
order models can be used as a data analysis method in the same way the
eigendecomposition of AR(1) models is currently used. Because a larger
class of systems can be modeled with higher-order AR~ p! models than with
AR(1) models, generalizing the eigendecomposition of AR(1) models to
AR~ p! models of arbitrary order renders this data analysis method more
widely applicable.

Since the eigendecomposition of AR models is of interest in particular for
high-dimensional data as they occur, for example, when the state vectors of
a time series represent spatial data, we have proposed a computationally
efficient stepwise least squares algorithm for the estimation of AR parameters

52 • A. Neumaier and T. Schneider

ACM Transactions on Mathematical Software, Vol. 27, No. 1, March 2001.



from high-dimensional data. In the stepwise least squares algorithm, the
least squares estimates for an AR model of order p , pmax are computed by
downdating a QR factorization for a model of order pmax. The downdating
scheme makes the stepwise least squares algorithm a computationally
efficient procedure when both the order of an AR model and the AR
parameters are to be estimated from large sets of high-dimensional data.

The least squares estimates of the parameters of an AR~ p! model are
conditional estimates in that in deriving the least squares estimates, p
initial state vectors of the available time series data are taken to be
constant, although, in fact, they are part of a realization of a stochastic
process. Unconditional estimates that are not based on some such approxi-
mation are obtained from Gaussian data with exact maximum likelihood
procedures (e.g., see Wei [1994]). By the exact treatment of the p initial
state vectors, the problem of maximizing the likelihood becomes nonlinear,
so that exact maximum likelihood algorithms are iterative and usually
slower than least squares algorithms (cf. Wei [1994]). To be sure, with an
exact maximum likelihood algorithm such as that of Ansley and Kohn
[1983; 1986], stability of the estimated model can be enforced, the time
series data can have missing values, and model parameters can be con-
strained to have given values, which with linear least squares algorithms is
impossible. But for high-dimensional data without missing values, the
computational efficiency of the stepwise least squares algorithm might be
more important than the guarantee that the estimated AR model be stable
or satisfy certain constraints on the parameters. The conditional least
squares estimates might then be used as initial values for an exact
maximum likelihood algorithm. Or, because it appears that for AR models
the conditional least squares estimates are of an accuracy comparable with
the accuracy of the unconditional maximum likelihood estimates (cf. Mentz
et al. [1998]), the stepwise least squares algorithm might be used in place
of computationally more complex exact maximum likelihood algorithms.

Approximate confidence intervals for the eigenmodes and their periods
and damping times can be constructed from the asymptotic distribution of
the least squares estimator of the AR parameters. For lack of a distribu-
tional theory for the eigenvectors and eigenvalues of Gaussian random
matrices, the confidence intervals for the eigenmodes, periods, and damp-
ing times are based on linearizations and rough approximations of the
distribution of estimation errors. Simulations of a bivariate AR(2) process
illustrate the quality of the least squares AR parameter estimates and of
the derived estimates of the eigendecomposition of an AR(2) model. The
simulations show that the confidence intervals for the eigendecomposition
roughly indicate the magnitude of the estimation errors, but that they are
reliable only when the sample of available time series data is large.

APPENDIX

For the construction of approximate confidence intervals for the eigen-
modes, periods, and damping times, one needs the gradient of these
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functions f~xB! of the AR parameters xB. The eigendecomposition of an AR
model depends only on the AR coefficient matrices A1, . . . , Ap but not on
the intercept vector w, so that the partial derivatives of the eigenmodes,
periods, and damping times with respect to components of the intercept
vector w are zero. Because the normalization conditions (10) for the
eigenmodes S :k of AR(1) models have the same form as the normalization

conditions (21) for the augmented eigenmodes S̃ :k of higher-order AR~ p!
models, it suffices to obtain closed-form expressions for the partial deriva-
tives of the eigenmodes S :k, periods Tk, and damping times tk of AR(1)
models. From the partial derivatives for the AR(1) model, the correspond-
ing partial derivatives for higher-order AR~ p! models are then obtained by
replacing the coefficient matrix A and its eigenvectors S :k by the aug-
mented coefficient matrix Ã and its eigenvectors S̃ :k.

One obtains the partial derivatives of the eigenvectors S :k and of the
eigenvalues lk by differentiating the normalization conditions (10) and the
eigenvector-eigenvalue relation

AS:k 5 lkS:k.

Taking the derivatives leads to the system of equations

AṠ:k 1 ȦS:k 5 l̇kS:k 1 lkṠ:k,

X :k
T Ẋ:k 1 Y :k

T Ẏ:k 5 0,

X :k
T Ẏ:k 1 Y :k

T Ẋ:k 5 0,

with dotted quantities denoting partial derivatives with respect to an
element of the coefficient matrix A. Upon substitution of the eigendecom-
position of the coefficient matrix A 5 SLS21, these equations become

~L 2 lkI !S21Ṡ:k 2 e~k!l̇k 5 2S21ȦS:k, (52)

X :k
T Ẋ:k 1 Y :k

T Ẏ:k 5 0, (53)

X :k
T Ẏ:k 1 Y :k

T Ẋ:k 5 0, (54)

where e ~k! is the kth column of an identity matrix. The kth component of
the differentiated eigenvector-eigenvalue relation (52) yields

l̇k 5 ~S21ȦS!kk (55)

as an explicit formula for the partial derivative of the eigenvalue S :k with
respect to the AR coefficients.
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If we write the derivative of the eigenvector S :k as

Ṡ:k 5 SZ:k, (56)

the remaining components of Eqs. (52)–(54) take the form

~lj 2 lk!Zjk 5 2~S21ȦS!jk for j Þ k,

~X :k
T X 1 Y :k

TY!Re Z:k 1 ~Y :k
T X 2 X :k

TY !Im Z:k 5 0,

~X :k
TY 1 Y :k

T X!Re Z:k 1 ~X :k
T X 2 Y :k

TY!Im Z:k 5 0.

If all eigenvalues are distinct, these equations can be solved for the matrix
Z and yield

Zjk 5
~S21ȦS!jk

lk 2 lj

for j Þ k, (57)

and

Re Zkk 5 OlÞkS~X TY 2 Y TX!kl Im Zlk 2 ~X TX 1 Y TY!kl Re ZlkD, (58)

Im Zkk 5
OlÞkS~Y TY 2 X TX!kl Im Zlk 2 ~X TX 1 Y TY!kl Re ZlkD

~X TX 1 Y TY!kk

. (59)

(In deriving (58) and (59), we used the normalization conditions (10) in the
form ~ X TX 1 Y TY!kk 5 1 and ~ X TY!kk 5 0.) The expressions (57)–(59) for
the elements of the matrix Z together with the relation (56) give explicit
formulas for the partial derivatives of the eigenvectors S :k with respect to
the AR coefficients.

In the case of multiple eigenvalues, the system of equations (52)–(54)
cannot be solved uniquely for the partial derivatives of the eigenvectors
with respect to the AR coefficients. In this case, however, the eigenvectors
are not uniquely determined, so that it is not meaningful to give confidence
intervals for them.

Writing the eigenvalues as lk 5 ak 1 ibk with real parts ak and imagi-
nary parts bk, we deduce from the derivative (55) of the eigenvalues that

ȧk 5 Re~S21ȦS!kk, ḃk 5 Im~S21ȦS!kk.

It can be verified that the derivatives of the damping time scales (8) and of
the periods (9) then take the form
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ṫk 5 t k
2

akȧk 1 bkḃk

ak
2 1 bk

2 (60)

and

Ṫk 5 2
T k

2

2p
Im

l̇k

lk

5
T k

2

2p

bkȧk 2 akḃk

ak
2 1 bk

2 . (61)

By means of the formulas (55)–(61), the ARFIT module armode assembles
the gradients that are required in the variance estimate (43).
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